Polariton lasing vs. photon lasing in a semiconductor microcavity.

نویسندگان

  • Hui Deng
  • Gregor Weihs
  • David Snoke
  • Jacqueline Bloch
  • Yoshihisa Yamamoto
چکیده

Nearly one decade after the first observation of Bose-Einstein condensation in atom vapors and realization of matter-wave (atom) lasers, similar concepts have been demonstrated recently for polaritons: half-matter, half-light quasiparticles in semiconductor microcavities. The half-light nature of polaritons makes polariton lasers promising as a new source of coherent and nonclassical light with extremely low threshold energy. The half-matter nature makes polariton lasers a unique test bed for many-body theories and cavity quantum electrodynamics. In this article, we present a series of experimental studies of a polariton laser, exploring its properties as a relatively dense degenerate Bose gas and comparing it to a photon laser achieved in the same structure. The polaritons have an effective mass that is twice the cavity photon effective mass, yet seven orders of magnitude less than the hydrogen atom mass; hence, they can potentially condense at temperatures seven orders of magnitude higher than those required for atom Bose-Einstein condensations. Accompanying the phase transition, a polariton laser emits coherent light but at a threshold carrier density two orders of magnitude lower than that needed for a normal photon laser in a same structure. It also is shown that, beyond threshold, the polariton population splits to a thermal equilibrium Bose-Einstein distribution at in-plane wave number k parallel > 0 and a nonequilibrium condensate at k parallel approximately 0, with a chemical potential approaching to zero. The spatial distributions and polarization characteristics of polaritons also are discussed as unique signatures of a polariton laser.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity.

We report on the room temperature polariton lasing and photon lasing in a ZnO-based hybrid microcavity under optical pumping. A series of experimental studies of the polariton lasing (exciton-photon detunings of δ = -119 meV) in the strong-coupling regime are discussed and compared to a photon lasing (δ = -45 meV) in the weak-coupling regime obtained in the same structure. The measured threshol...

متن کامل

Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity.

Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach t...

متن کامل

Spontaneous symmetry breaking in a polariton and photon laser.

We report on the simultaneous observation of spontaneous symmetry breaking and long-range spatial coherence both in the strong- and the weak-coupling regime in a semiconductor microcavity. Under pulsed excitation, the formation of a stochastic order parameter is observed in polariton and photon lasing regimes. Single-shot measurements of the Stokes vector of the emission exhibit the buildup of ...

متن کامل

Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity.

We report on the condensation of microcavity exciton polaritons under optical excitation in a microcavity with four embedded InGaAs quantum wells. The polariton laser is characterized by a distinct non-linearity in the input-output-characteristics, which is accompanied by a drop of the emission linewidth indicating temporal coherence and a characteristic persisting emission blueshift with incre...

متن کامل

Coexistence of low threshold lasing and strong coupling in microcavities

We report the coexistence of low threshold lasing and strong coupling in a high-quality semiconductor microcavity under near-resonant optical pumping. A sharp laser mode splits from the lower-polariton branch and approaches the bare cavity mode frequency as the pump power increases. The lasing is produced by low density localized exciton states, which are weakly coupled to the cavity mode. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 26  شماره 

صفحات  -

تاریخ انتشار 2003